องค์ประกอบพื้นฐานของเครื่องคอมพิวเตอร์

ดังที่ทราบกันแล้วว่าเครื่องคอมพิวเตอร์เป็นอุปกรณ์ที่ช่วยในการคำนวณและการทำงานของมนุษย์ เครื่องคอมพิวเตอร์สามารถประมวลผลข้อมูลให้กลายเป็นสารสนเทศ สามารถเปรียบเทียบและตัดสินใจ สามารถทำงานทางตรรกศาสตร์ สามารถคำนวณค่าทางคณิตศาสตร์ที่มนุษย์เองต้องใช้เวลามากในการแก้ปัญหา และสามารถออกแบบและสร้างสรรค์งานทางกราฟิกได้ หากเปรียบเทียบกับมนุษย์ เราสามารถทำงานให้ลุล่วงได้ เนื่องจากมีสมองที่ช่วยคิดคำนวณ ตัดสินใจ และออกแบบงาน แล้วเครื่องคอมพิวเตอร์จะใช้ส่วนประกอบใดมาทำหน้าที่เหมือนสมองเพื่อให้งานสำเร็จลุล่วงได้ ในหัวข้อนี้เราจะศึกษาว่าองค์ประกอบพื้นฐานที่ทำให้เครื่องคอมพิวเตอร์สามารถทำงานได้นั้นประกอบด้วยกี่ส่วนและอะไรบ้าง

ที่มา http://61.19.202.164/resource/ebook/ipst-it4/index.htm

รูปที่ 4.1 องค์ประกอบของคอมพิวเตอร์

ในการทำงานของเครื่องคอมพิวเตอร์ ประกอบด้วยองค์ประกอบพื้นฐาน 5 ส่วนด้วยกัน ได้แก่ หน่วยรับเข้า (Input Unit) หน่วยประมวลผล กลาง (Central Processing Unit) หน่วยความจำหลัก (Main Memory Unit) หน่วยความจำรอง (Secondary Memory Unit) และหน่วยส่งออก (Output Input) แต่ละหน่วยทำหน้าที่ประสานกัน ดังรูปที่ 4.1

โดยปกติการทำงานหนึ่ง ๆ ของเครื่องคอมพิวเตอร์จะเริ่มจากผู้ใช้ป้อนข้อมูลผ่านทางหน่วยรับเข้า ได้แก่ อุปกรณ์รับเข้าข้อมูล (Input Device) เช่น แผงแป้นอักขระ เมาส์ โดยข้อมูลที่ป้อนเข้าไปจะได้รับการเปลี่ยนแปลงให้อยู่ในรูปสัญญาณดิจิตอล ซึ่งประกอบด้วยเลข 0 และ 1 คำสั่งและข้อมูลดังกล่าวจะถูกส่งต่อไปยังหน่วยประมวลผลกลางเพื่อประมวลผลตามคำสั่งต่อไป และในระหว่างการประมวลผลหากมีคำสั่งให้นำผลลัพธ์จากการประมวลผลไปจัดเก็บในหน่วยความจำหลัก ซึ่งหน่วยความจำหลักที่ทำหน้าที่เก็บข้อมูลจากการประมวลผลเป็นการชั่วคราวนี้เรียกว่า “แรม” (Random Access Memory : RAM) ข้อมูลดังกล่าวจะถูกส่งไปยังหน่วยความจำหลักพร้อมทั้งค่าที่อ้างอิงถึงตำแหน่งในการจัดเก็บ ทั้งนี้ เนื่องจากภายในหน่วยความหลักมีพื้นที่ใช้จัดเก็บข้อมูลหลายประเภท ซึ่งเราจะได้ศึกษาต่อไป ในขณะเดียวกันอาจมีคำสั่งให้นำผลลัพธ์จากการประมวลผลดังกล่าวไปแสดงผลผ่านทางหน่วยส่งออก ซึ่งอาจเป็นจอภาพ (Monitor) หรือเครื่องพิมพ์ (Printer) นอกจากนี้เราสามารถบันทึกข้อมูลที่อยู่ในแรมลงในหน่วยความจำรอง อันได้แก่ แผ่นบันทึก (Diskette) ซีดีรอม (Compact Disk Read Only Memory : CD-ROM) เพื่อนำข้อมูลดังกล่าวกลับมาใช้อีกในอนาคตได้ โดยการอ่านข้อมูลที่บันทึกในสื่อดังกล่าวผ่านทางเครื่องขับ (Drive) และในปัจจุบันมีการคิดค้นหน่วยความจำรองที่พัฒนามาจากหน่วยความจำหลัก ประเภทที่เรียกว่า “รอม” (Read Only Memory : ROM) ทำให้สามารถบันทึกข้อมูลได้ปริมาณมากขึ้น และมีขนาดเล็กสะดวกต่อการพกพา และจากที่กล่าวมาทั้งหมด การส่งข้อมูลผ่านไปยังหน่วยต่าง ๆ ภายในระบบคอมพิวเตอร์จะผ่านทางระบบบัส (Bus)  ไม่ว่าจะเป็นบัสข้อมูล (Data Bus)  ทำหน้าที่ส่งสัญญาณข้อมูล  บัสที่อยู่ (Address Bus) ทำหน้าที่ส่งตำแหน่งอ้างอิงในหน่วยความจำหลักไปยังหน่วยความจำหลัก ในขณะที่มีการสั่งจัดเก็บข้อมูลในหน่วยความจำดังกล่าวหรือบัสควบคุม (Control Bus) ที่ทำหน้าที่ส่งสัญญาณควบคุมไปยังอุปกรณ์ต่าง ๆ

หน่วยรับเข้า (Input Unit)  

หน่วยรับข้อมูลทำหน้าที่รับโปรแกรมและข้อมูลเข้าสู่เครื่องคอมพิวเตอร์ โดยข้อมูลอาจส่งผ่านอุปกรณ์รับข้อมูลได้โดยตรง เช่น ผ่านแผงแป้นอักขระ (Keyboard) เมาส์ (Mouse) ปากกาแสง (Light Pen) ก้านควบคุม (Joystick) เครื่องอ่านรหัสแท่ง (Bar Code Reader) หรือโดยใช้อุปกรณ์รับข้อมูลอ่านข้อมูลในสื่อข้อมูล ซึ่งในกรณีนี้ต้องนำข้อมูลมาบันทึกลงสื่อข้อมูลเสียก่อน ตัวอย่างของอุปกรณ์รับข้อมูลเหล่านี้ ได้แก่ เครื่องขับแผ่นบันทึก (Disk Drive) เครื่องขับเทปแม่เหล็ก (Magnetic Tape Drive) สำหรับตัวอย่างสื่อข้อมูล ได้แก่ แผ่นบันทึก (Floppy Disk หรือ Diskette) เทปแม่เหล็ก (Magnetic Tape) เป็นต้น โดยอุปกรณ์รับข้อมูลจะเปลี่ยนข้อมูลที่รับเข้ามาให้อยู่ในรูปของรหัส แล้วส่งไปยังหน่วยความจำเพื่อเตรียมทำการประมวลผลต่อไป  

อุปกรณ์รับเข้าในปัจจุบันมีหลายประเภท แต่ละประเภทมีวิธีการในการนำข้อมูลเข้าที่ต่าง ๆ กัน เราอาจแบ่งประเภทของอุปกรณ์รับเข้าตามลักษณะการรับข้อมูลเข้าได้ดังนี้  

4.2.1  อุปกรณ์รับเข้าแบบกด  

  

รูปที่ 4.2 แผงแป้นอักขระ (Keyboard)  

(1)  แผงแป้นอักขระ (Keyboard)  

เป็นอุปกรณ์รับเข้าพื้นฐานที่ต้องมีในคอมพิวเตอร์ทุกเครื่อง  จะรับข้อมูลจากการกดแป้นแล้วทำการเปลี่ยนเป็นรหัสเพื่อส่งต่อไปให้กับคอมพิวเตอร์ แป้นพิมพ์ที่ใช้ในการป้อนข้อมูลจะมีจำนวนตั้งแต่ 50 แป้นขึ้นไป แผงแป้นอักขระส่วนใหญ่มีแป้นตัวเลขแยกไว้ต่างหาก เพื่อทำให้การป้อนข้อมูลตัวเลขทำได้ง่ายและสะดวกขึ้น  

การวางตำแหน่งแป้นอักขระ จะเป็นไปตามมาตรฐานของระบบพิมพ์สัมผัสของเครื่องพิมพ์ดีดที่มีการใช้แป้นยกแคร่ (Shift) เพื่อทำให้สามารถใช้พิมพ์ได้ทั้งตัวอักษรภาษาอังกฤษตัวพิมพ์ใหญ่และตัวพิมพ์เล็ก ซึ่งระบบรับรหัสตัวอักษรภาษาอังกฤษที่ใช้ในคอมพิวเตอร์ ส่วนใหญ่จะเป็นรหัส 7 บิต และ 8 บิต กล่าวคือ เมื่อมีการกดแป้นพิมพ์ แผงแป้นอักขระจะส่งรหัสขนาด 7 หรือ 8 บิต นี้เข้าไปในระบบคอมพิวเตอร์  

เมื่อนำเครื่องคอมพิวเตอร์มาใช้งานพิมพ์ภาษาไทย จึงต้องมีการดัดแปลงแผงแป้นอักขระให้สามารถใช้งานได้ทั้งภาษาอังกฤษและภาษาไทย กลุ่มแป้นที่ใช้พิมพ์ตัวอักษรภาษาไทยจะเป็นกลุ่มแป้นเดียวกับภาษาอังกฤษ แต่จะใช้แป้นพิเศษแป้นหนึ่งทำหน้าที่สับเปลี่ยนการพิมพ์ภาษาไทยหรือภาษาอังกฤษภายใต้การควบคุมของซอฟต์แวร์อีกชั้นหนึ่ง  

แผงแป้นอักขระสำหรับเครื่องไมโครคอมพิวเตอร์ตระกูลไอบีเอ็มที่ผลิตออกมารุ่นแรก ๆ ตั้งแต่ พ.ศ. 2524 จะมีแป้นรวมทั้งหมด 83 แป้น ซึ่งเรียกว่า แผงแป้นอักขระพีซีเอ็กซ์ที ต่อมาใน พ.ศ. 2527 บริษัทไอบีเอ็มได้ปรับปรุงแผงแป้นอักขระ กำหนดสัญญาณทางไฟฟ้าของแป้นขึ้น จัดตำแหน่งและขนาดแป้นให้เหมาะสมยิ่งขึ้น โดยมีจำนวนแป้นรวม 84 แป้น เรียกว่า “แผงแป้นอักขระพีซีเอที” และในเวลาต่อมาก็ได้ปรับปรุงแผงแป้นอักขระขึ้นพร้อม ๆ กับการออกเครื่องรุ่น PS/2 โดยใช้สัญญาณทางไฟฟ้าเช่นเดียวกับแผงแป้นอักขระรุ่นพีซีเอทีเดิม และเพิ่มจำนวนแป้นอีก 17 แป้น รวมเป็น 101 แป้นการเลือกซื้อแผงแป้นอักขระควรพิจารณารุ่นใหม่ที่เป็นมาตรฐานและสามารถใช้ได้กับเครื่องคอมพิวเตอร์ที่มีอยู่  

สำหรับเครื่องขนาดกระเป๋าหิ้วไม่ว่าจะเป็นแล็ปท็อปหรือโน้ตบุ๊ค ขนาดของแผงแป้นอักขระยังไม่มีการกำหนดมาตรฐาน เพราะผู้ผลิตต้องการพัฒนาให้เครื่องมีขนาดเล็กลง โดยลดจำนวนแป้นลง แล้วใช้แป้นหลายแป้นพร้อมกันเพื่อทำงานได้เหมือนแป้นเดียว  

4.2.2  อุปกรณ์รับเข้าแบบชี้ตำแหน่ง  

(1)  เมาส์ (Mouse)  

ซอฟต์แวร์รุ่นใหม่ที่พัฒนาในระยะหลัง ๆ นี้ สามารถติดต่อกับผู้ใช้โดยการใช้รูปกราฟิกแทนคำสั่ง มีการใช้งานเป็นช่องหน้าต่าง และเลือกรายการหรือคำสั่งด้วยภาพหรือสัญรูป (Icon) อุปกรณ์รับเข้าที่นิยมใช้จึงเป็นอุปกรณ์ประเภทตัวชี้ที่เรียกว่า “เมาส์” (Mouse)  

เมาส์เป็นอุปกรณ์ที่ให้ความรู้สึกที่ดีต่อการใช้งาน ช่วยให้การใช้งานง่ายขึ้น ด้วยการใช้เมาส์เลื่อนตัวชี้ไปยังตำแหน่งต่าง ๆ บนจอภาพ ในขณะที่สายตาจับอยู่ที่จอภาพก็สามารถใช้มือลากเมาส์ไปมาได้ ระยะทางและทิศทางของตัวชี้จะสัมพันธ์และเป็นไปในแนวทางเดียวกับการเลื่อนเมาส์  

ที่มา http://61.19.202.164/resource/ebook/ipst-it4/files/Pic3_4_5/pic4_02.gif  

รูปที่ 4.3 แสดงภาพภายในของเมาส์แบบทางกล  

เมาส์  แบ่งได้เป็น  2  แบบ คือ  แบบทางกลและแบบใช้แสง แบบทางกลเป็นแบบที่ใช้ลูกกลิ้งกลมที่มีน้ำหนักและแรงเสียดทานพอดี  เมื่อเลื่อนเมาส์ไปในทิศทางใดจะทำให้ลูกกลิ้งเคลื่อนไปมาในทิศทางนั้น ลูกกลิ้งจะทำให้กลไกซึ่งทำหน้าที่ปรับแกนหมุนในแกน X และแกน Y แล้วส่งผลไปเลื่อนตำแหน่ง  เมาส์แบบทางกลนี้  มีโครงสร้างที่ออกแบบได้ง่าย มีรูปร่างพอเหมาะ คือ ส่วนลูกกลิ้งจะต้องออกแบบให้กลิ้งได้ง่ายและไม่ลื่นไถล สามารถควบคุมความเร็วได้อย่างต่อเนื่อง สัมพันธ์ระหว่างทางเดินของเมาส์และจอภาพ  

ที่มา http://www.magmareport.com/uploads/pics/main/files/Chip/Auguest%202007/Reviews/Logitech%20VX%20Nano/Logitech%20VX%20Nano-2.jpg  

รูปที่ 4.4 เมาส์แบบใช้แสง  

เมาส์แบบใช้แสงอาศัยหลักการส่งแสงจากเมาส์ลงไปบนแผ่นรองเมาส์ (Mouse Pad) ซึ่งเป็นตาราง (Grid) ตามแนวแกน X และแกน Y เมื่อเลื่อนตัวเมาส์เคลื่อนไปบนแผ่นตารางรองเมาส์ ก็จะมีแสงตัดผ่านตารางและสะท้อนขึ้นมา ทำให้ทราบตำแหน่งที่ลากไป เมาส์แบบนี้ไม่ต้องใช้ลูกกลิ้งกลม แต่ต้องใช้แผ่นตารางรองเมาส์พิเศษ  

(2)  อุปกรณ์ชี้ตำแหน่งสำหรับเครื่องคอมพิวเตอร์โน้ตบุ๊ก  

เนื่องจากเครื่องคอมพิวเตอร์โน้ตบุ๊ก เป็นเครื่องคอมพิวเตอร์ ที่ผลิตขึ้นมาเพื่อความสะดวกในการพกพาไปในที่ต่าง ๆ จึงจำเป็นต้องออกแบบให้มีอุปกรณ์ที่ต่อพ่วงน้อยที่สุด และใช้เนื้อที่ในการใช้งานน้อยที่สุด ดังจะเห็นว่าเครื่องคอมพิวเตอร์ดังกล่าวมีแผงแป้นอักขระติดอยู่กับจอภาพและอุปกรณ์อีกอย่างหนึ่งที่ถือว่าเป็นสิ่งจำเป็นในการใช้งานเครื่องคอมพิวเตอร์ในปัจจุบัน คือ เมาส์ จึงต้องมีการคิดค้นอุปกรณ์ที่จะทำหน้าที่แทนเมาส์ โดยจะต้องออกแบบให้สามารถติดอยู่กับตัวเครื่องได้เลย สะดวกในการพกพา และใช้พื้นที่ในการทำงานน้อย ในปัจจุบันเรามีอุปกรณ์ที่ทำหน้าที่และมีคุณสมบัติดังที่กล่าวมาอยู่ 3 ชนิด ได้แก่  

ก)  ลูกกลมควบคุม (Track Ball)  

มีลักษณะเป็นลูกบอลกลมอยู่ภายในเบ้าตรงบริเวณแผงแป้นอักขระของเครื่องคอมพิวเตอร์โน้ตบุ๊ก  ผู้ใช้สามารถใช้อุปกรณ์ชิ้นนี้ควบคุมการเคลื่อนที่ของตัวชี้บนจอภาพ โดยการหมุนลูกกลมไปในทิศทางที่ต้องการ  

ที่มา http://zonehardwares.siam108site.com/images/mouse8.jpg  

 

รูปที่ 4.5 ลูกกลมควบคุม  

ข)  แท่งชี้ควบคุม (Track Point)  

มีลักษณะเป็นแท่งพลาสติก ที่ส่วนยอดหุ้มด้วยยางโผล่ขึ้นมาตรงกลาง ในแผงแป้นอักขระของเครื่องคอมพิวเตอร์โน้ตบุ๊ก ผู้ใช้สามารถใช้อุปกรณ์ชิ้นนี้ควบคุมการเคลื่อนที่ของตัวชี้บนจอภาพ โ ดยการโยกแท่งชี้ควบคุมไปในทิศทางที่ต้องการ  

ที่มา http://zonehardwares.siam108site.com/images/mouse9.jpg  

รูปที่ 4.6 แสดงการใช้งานแท่งชี้ควบคุมบนคอมพิวเตอร์โน้ตบุ๊ก  

ค)  แผ่นรองสัมผัส (Touch Pad)  

เป็นแผ่นพลาสติกที่ไวต่อการสัมผัส อยู่ตรงหน้าแผงแป้นอักขระของเครื่องคอมพิวเตอร์โน้ตบุ๊ก เป็นอุปกรณ์ที่นิยมติดตั้งบนเครื่องคอมพิวเตอร์แบบโน้ตบุ๊กในปัจจุบัน เนื่องจากใช้งานง่าย ผู้ใช้สามารถใช้อุปกรณ์ชิ้นนี้ควบคุมการเคลื่อนที่ของตัวชี้บนจอภาพ โดยการแตะสัมผัสบนแผ่นรองสัมผัสเพื่อควบคุมตัวชี้ไปในทิศทางที่ต้องการ และสามารถคลิกหรือดับเบิลคลิกเพื่อเลือกรายการหรือสัญรูปได้  

  

รูปที่ 4.7 แสดงตำแหน่งของแผ่นรองสัมผัสบนคอมพิวเตอร์โน้ตบุ๊ก  

(3)  ก้านควบคุม (Joystick)  

อุปกรณ์รับเข้าชนิดนี้เป็นที่คุ้นเคยของนักเรียนที่นิยมเล่นเกมคอมพิวเตอร์ชนิดที่มีการแสดงผลเป็นกราฟิกที่ตัวผู้เล่นที่ปรากฏบนจอภาพต้องมีการเคลื่อนที่เพื่อทำภารกิจตามกติกาของเกม ตัวผู้เล่นที่ปรากฏบนจอภาพเปรียบได้กับตัวชี้ตำแหน่งที่ปรากฏในซอฟต์แวร์ประยุกต์ทั่วไปและก้านควบคุมนี้ก็ทำหน้าที่เหมือนเมาส์ที่คอยกำหนดการเคลื่อนที่ของตัวชี้บนจอภาพ โดยลักษณะของก้านควบคุมจะคล้ายกล่องที่มีก้านโผล่ออกมา และก้านนั้นสามารถบิดขึ้น ลง ซ้าย ขวา ได้ การเคลื่อนที่ของก้านนี้เองที่เป็นการกำหนดทิศทางการเคลื่อนที่ของตัวชี้ตำแหน่ง  

ที่มา http://www.thaigoodview.com/library/contest2551/tech04/32/hardware/images/logitechFreedomJoystickWirelesss.gif  

รูปที่ 4.8 ก้านควบคุม  

หลักการทำงานของก้านควบคุมจะขึ้นอยู่กับอุปกรณ์ภายในที่เรียกว่า “โพเทนชันมิเตอร์” (Potentionmeter) สองตัว โพเทนชันมิเตอร์จะหมุนตามและอ่านค่าทิศทางการบิดของก้านควบคุม โพเทนชันมิเตอร์ตัวหนึ่งจะรับรู้ทิศทางในแนวแกน X หรือแนวนอน (Horizontal Line) ในขณะที่อีกตัวหนึ่งจะรับรู้ทิศทางในแนวแกน Y หรือแนวตั้ง (Vertical Line) การอ่านค่าของการบิดก้านควบคุมของอุปกรณ์ทั้งสองชิ้นจะให้สัญญาณไฟฟ้า 2 สัญญาณที่เป็นอิสระต่อกันส่งต่อไปยังเครื่องคอมพิวเตอร์ และเป็นข้อมูลที่ไปกำหนดการเคลื่อนที่ของตัวชี้ตำแหน่งหรือตัวของผู้เล่นบนจอภาพ ดังนั้น จะเห็นว่าการทำงานของก้านควบคุมจะไม่ให้รายละเอียดมาก เพียงแค่ให้ผู้ใช้เห็นทิศทางการเคลื่อนที่ของตัวชี้ได้เท่านั้น  

4.2.3  อุปกรณ์รับเข้าแบบปากกา  

อุปกรณ์รับเข้าในกลุ่มนี้จะมีส่วนประกอบอยู่ชิ้นหนึ่งเป็นส่วนประกอบสำคัญ คือ อุปกรณ์ที่มีรูปร่างเหมือนปากกา แต่จะมีแสงที่ปลาย งานที่ใช้อุปกรณ์ชิ้นนี้มักเป็นงานเกี่ยวกับกราฟิกที่ต้องมีการวาดรูป งานวาดแผนผัง และงานคอมพิวเตอร์ช่วยออกแบบ (Computer Aided Design : CAD) ซึ่งถ้าใช้อุปกรณ์ที่มีรูปร่างเหมือนปากกา จะช่วยให้ทำงานได้สะดวกและรวดเร็วขึ้น อุปกรณ์รับเข้าระบบปากกาที่มีใช้งานอยู่แพร่หลาย ได้แก่  

(1)  ปากกาแสง (Light Pen)  

เป็นอุปกรณ์ที่ไวต่อแสงที่นอกจากจะใช้ในการวาดรูปสำหรับงานกราฟิกแล้ว ยังสามารถทำหน้าที่เหมือนเมาส์ในการชี้ตำแหน่งบนจอภาพหรือทำงานกับรายการเลือกและสัญรูปเพื่อสั่งงานเครื่องคอมพิวเตอร์ โดยที่ปลายข้างหนึ่งของปากกาชนิดนี้จะมีสายเชื่อมที่สามารถต่อเข้ากับเครื่องคอมพิวเตอร์ เมื่อมีการแตะปากกาที่จอภาพข้อมูลจะถูกส่งผ่านสายนี้ไปยังเครื่องคอมพิวเตอร์ ทำให้สามารถรับรู้ตำแหน่งที่ชี้และกระทำตามคำสั่งได้ นอกจากนี้เมื่อมีการใช้คอมพิวเตอร์ชนิดพกพาหรือปาล์มท็อปอย่างแพร่หลาย ก็มีการนำปากกาชนิดนี้มาใช้ในการรับข้อมูลที่เป็นลายมือบนเครื่องคอมพิวเตอร์ชนิดนี้ด้วย  

ที่มา http://61.19.202.164/resource/ebook/ipst-it4/files/Pic3_4_5/pic4_08.gif  

รูปที่ 4.9 ปากกาแสง ปลายด้านหนึ่งมีสายเชื่อมไปต่อกับเครื่องคอมพิวเตอร์  

ที่มา http://t1.gstatic.com/images?q=tbn:u9yF4dTX9YseYM:http://1.bp.blogspot.com/_vVrfNU_1-G0/SpNd5sJdI8I/AAAAAAAAACI/d7fqbraSufc/s320/lightpen.jpg  

รูปที่ 4.10 แสดงการใช้ปากกาแสงเลือกรายการบนจอภาพ  

(2)  เครื่องอ่านพิกัด (Digitizing Tablet)  

หรืออาจเรียกว่าแผ่นระนาบกราฟิก (Graphic Tablet) เป็นอุปกรณ์รับเข้าที่มีส่วนประกอบ 2 ชิ้น ได้แก่ กระดานแบบสี่เหลี่ยมที่มีเส้นแบ่งเป็นตาราง (Grid) ของเส้นลวดที่ไวต่อสัมผัสสูง และปากกาที่ทำหน้าที่เป็นตัวชี้ตำแหน่งหรือวาดรูปบนกระดานข้างต้น คอมพิวเตอร์สามารถรับรู้ตำแหน่งของกระดานที่มีการสัมผัสหรือวาดเส้น และเส้นที่วาดจะแสดงบนจอภาพได้ อุปกรณ์ชิ้นนี้มักใช้ในการออกแบบรถยนต์หรือหุ่นยนต์  

ที่มา http://graphics.sci.ubu.ac.th/wiki/images/thumb/d/d5/188733.jpg/250px-188733.jpg  

รูปที่ 4.11 แสดงการใช้เครื่องอ่านพิกัดช่วยในงานออกแบบ  

4.2.4  อุปกรณ์รับเข้าแบบจอสัมผัส  

จอสัมผัส (Touch Screen) เป็นจอภาพแบบพิเศษที่สามารถรับรู้ได้ว่ามีการสัมผัสที่ตำแหน่งใดบนจอภาพ เมื่อมีการเลือก ตำแหน่งที่เลือกจะถูกแปลงเป็นสัญญาณไฟฟ้าส่งไปยังซอฟต์แวร์ที่ทำงานเพื่อแปลเป็นคำสั่งให้เครื่องคอมพิวเตอร์ทำงาน โดยซอฟต์แวร์ที่ใช้งานมักเป็นซอฟต์แวร์ที่เขียนขึ้นเฉพาะ การใช้จอสัมผัสเหมาะกับการใช้งานหรือซอฟต์แวร์ที่ต้องมีการเลือกคำสั่งในรายการเลือกหรือสัญรูป โดยต้องออกแบบส่วนติดต่อผู้ใช้ให้มีสัญรูปที่มีขนาดใหญ่ เพื่อสะดวกในการเลือกและลดความผิดพลาด  ปัจจุบันเราจะพบเห็นเครื่องคอมพิวเตอร์ที่ใช้จอภาพสัมผัสวางอยู่ทั่วไปตามสถานที่สาธารณะหรือห้างสรรพสินค้า ไม่ว่าจะเป็นเครื่องคอมพิวเตอร์ที่ติดตั้งไว้เพื่อให้ข้อมูลทางการท่องเที่ยว เครื่องคอมพิวเตอร์บอกตำแหน่งต่าง ๆ ในสถานที่ เครื่องคอมพิวเตอร์อธิบายสินค้าหรือบริการ หรือแม้แต่ตู้เกมแบบหยอดเหรียญ  

ที่มา http://61.19.202.164/resource/ebook/ipst-it4/files/Pic3_4_5/pic4_11.gif  

รูปที่ 4.12 แสดงการใช้งานจอสัมผัสเลือกตำแหน่งบนจอภาพ  

เทคโนโลยีการผลิตจอภาพสัมผัสในปัจจุบันมีด้วยกัน 4 แบบได้แก่เทคโนโลยีเยื่อเชิงตัวนำ (Conductive Membrane) เทคโนโลยีจานเก็บประจุ (Capacity Plate) เทคโนโลยีคลื่นจากสมบัติของเสียง (Acoustic Wave) และเทคโนโลยีลำแสงรังสีอินฟาเรด (Infrared-Beam) ซึ่งเทคโนโลยีสุดท้ายเป็นที่นิยมมาก เนื่องจากมีความละเอียดมาก แต่ก็มีราคาแพง  

ถึงแม้การใช้จอภาพสัมผัสจะช่วยให้การใช้งานเครื่องคอมพิวเตอร์ทำได้ง่ายขึ้น โดยสามารถใช้นิ้วมือสั่งงานบนจอภาพโดยตรง แต่ก็ไม่เหมาะกับการนำมาใช้งานทั่วไป เนื่องจากอุปกรณ์ประเภทนี้มีน้ำหนักมากและต้องใช้พลังงานไฟฟ้าสูง  

4.2.5  อุปกรณ์รับเข้าแบบกราดตรวจ  

(1)  เครื่องอ่านรหัสแท่ง (Bar Code Reader)  

ก่อนที่เราจะรู้จักกับเครื่องอ่านรหัสแท่ง  ก็คงต้องทำความรู้จักกับสิ่งที่เรียกว่า “รหัสแท่ง” (Bar Code) ก่อน  รหัสแท่งเป็นสิ่งที่เราพบเห็นได้บ่อยในการดำรงชีวิตในสังคมปัจจุบัน ไม่ว่าจะเป็นบนสินค้าในห้างสรรพสินค้าหรือบนหนังสือห้องสมุด รหัสแท่งเป็นสัญลักษณ์หรือรหัสที่มีลักษณะเป็นแท่งหรือแถบสีขาวและดำเรียงต่อเนื่องกันในแนวตั้ง แต่ละแท่งมีความหนาไม่เท่ากัน ความหนาที่แตกต่างกันนี้เองทำให้เราสามารถใช้รหัสแท่งเป็นสัญลักษณ์แทนสินค้าหรือของที่ต่างชนิดกันหรือคนละชิ้นกันได้  

ที่มา http://www.whitemedia.org/wma/images/stories/teamwork/mai/8_31.jpg  

รูปที่ 4.13 รหัสแท่ง  

สำหรับเครื่องอ่านรหัสแท่งเป็นอุปกรณ์ที่คิดค้นขึ้นเพื่อนำเข้าข้อมูลที่เป็นรหัสแท่งโดยเฉพาะ โดยก่อนที่จะนำระบบการอ่านรหัสแท่งมาใช้ในงานใด ๆ ต้องกำหนดมาตรฐานของรหัสแท่งที่ใช้เสียก่อน เช่น ในซูเปอร์มาร์เก็ตนิยมใช้มาตรฐานยูพีซี (Universal Product Code : UPC)ซึ่งเข้ารหัสโดยใช้ตัวเลขความยาว 12 ตัว โดยตัวเลขแต่ละตัวจะมีความหมายที่สามารถอ้างถึงสินค้าได้ ในขณะที่หน่วยงาน เช่น โรงเรียน โรงงาน มักนำมาตรฐานโค้ด 39 (Three Of Nine) มาใช้งาน เนื่องจากมีความยืดหยุ่นกว่า และสามารถเข้ารหัสได้ทั้งตัวเลข ตัวอักษรภาษาอังกฤษ และอักขระพิเศษ นอกจากนี้ยังสามารถขยายความยาวของรหัสได้ตามต้องการด้วย  

ที่มา http://www.teedindd.com/home/components/com_joomlaboard/uploaded/images/123-2cb97595df7fb2afdf89b83722d00341.JPG  

รูปที่ 4.14 เครื่องอ่านรหัสแท่งแบบต่าง ๆ  

การทำงานของเครื่องอ่านรหัสแท่งใช้หลักการของการสะท้อนแสง โดยเครื่องอ่านจะส่องลำแสงไปยังรหัสแท่งที่อยู่บนสินค้า แล้วแปลงรหัสที่อ่านได้เป็นสัญญาณไฟฟ้าส่งผ่านสายที่เชื่อมต่ออยู่กับเครื่องคอมพิวเตอร์ เพื่อให้ซอฟต์แวร์ที่สร้างขึ้นใช้งานร่วมกับอุปกรณ์ชิ้นนี้โดยเฉพาะนำไปประมวลผล ซึ่งโดยมากมักเป็นซอฟต์แวร์ทางด้านฐานข้อมูล เช่น ถ้าเป็นการขายสินค้า เมื่อเครื่องคอมพิวเตอร์รับสัญญาณจากเครื่องอ่านจะรับรู้ว่าสินค้าชนิดใดถูกขายไป ซอฟต์แวร์จะสั่งให้ไปดึงข้อมูลราคาของสินค้าชนิดนั้นขึ้นมาแสดงที่จอภาพ ในขณะเดียวกันจะไปลดจำนวนสินค้าชนิดนั้นออกจากข้อมูลสินค้าคงคลัง  

เครื่องอ่านรหัสแท่งนี้ได้รับความนิยมมาก เนื่องจากสามารถอำนวยความสะดวกในการนำเข้าข้อมูลแทนการนำเข้าข้อมูลผ่านแผงแป้นอักขระ สามารถลดความผิดพลาดระหว่างการนำเข้าข้อมูล และช่วยให้การทำงานเป็นอัตโนมัติเนื่องจากสามารถเชื่อมต่อกับฐานข้อมูลได้  

(2)  เครื่องกราดตรวจ (Scanner)  

หรือที่เรานิยมเรียกกันว่า “สแกนเนอร์” (Scanner) เป็นอุปกรณ์ที่ช่วยเพิ่มความน่าสนใจให้งานเอกสารและงานนำเสนอข้อมูลเป็นอย่างมาก อุปกรณ์นี้สามารถนำเข้าข้อมูลที่เป็นรูปภาพหรือข้อความที่อยู่บนสิ่งพิมพ์ได้ โดยใช้หลักการสะท้อนแสง ข้อมูลที่รับเข้าโดยอุปกรณ์ชิ้นนี้จะเป็นรูปภาพที่ได้รับการแปลงให้อยู่ในรูปแบบที่เครื่องคอมพิวเตอร์สามารถเข้าใจและตีความได้ และสามารถเก็บในหน่วยความจำได้ ผู้ใช้สามารถนำรูปดังกล่าวไปประกอบในแฟ้มข้อมูลเอกสารที่สร้างจากซอฟต์แวร์ประมวลคำ หรือแฟ้มข้อมูลงานนำเสนอที่สร้างจากซอฟต์แวร์นำเสนอข้อมูลได้  

ที่มา http://www3.ipst.ac.th/research/assets/web/mahidol/computer(10)/system/images/scanner/scanner.gif  

รูปที่ 4.15 เครื่องกราดตรวจ  

ในการใช้งานอุปกรณ์ชิ้นนี้ต้องมีซอฟต์แวร์ช่วยในการแสดงข้อมูลและจัดเก็บด้วย การทำงานของอุปกรณ์ใช้เทคโนโลยีการส่องแสงผ่านฟิลเตอร์ 3 ตัว ได้แก่ ฟิลเตอร์สีแดง สีเขียว และสีน้ำเงิน ไปยังวัตถุที่ต้องการกราดตรวจ (Scan) เมื่อแสงผ่านวัตถุจะเกิดการสะท้อนผ่านกระจกและเลนส์ส่งไปยังวัตถุไวแสง ซึ่งทำหน้าที่ตรวจจับความเข้มของแสง หลังจากนั้นแปลงความเข้มของแสงที่แตกต่างกันให้เป็นข้อมูลแบบดิจิตอลที่คอมพิวเตอร์สามารถเข้าใจได้ และข้อมูลดังกล่าวจะแสดงเป็นรูปภาพโดยซอฟต์แวร์ที่ใช้ร่วมกับเครื่องสแกนเนอร์นั้น ๆ ผู้ใช้สามารถจัดเก็บแล้วนำรูปที่ได้ไปตกแต่งเพิ่มเติมโดยใช้ซอฟต์แวร์กราฟิก เช่น ซอฟต์แวร์โฟโทชอพ (Photoshop)  

คุณภาพของสแกนเนอร์ จะพิจารณาจากความละเอียดของภาพซึ่งมีหน่วยเป็นจุดต่อนิ้ว (Dot Per Inch : dpi) ภาพที่มีจำนวนจุดต่อนิ้วมากจะมีความละเอียดสูง ซึ่งจะเหมือนรูปจริงมาก นอกจากนี้ความสามารถในการแยกแยะสีของสแกนเนอร์และความเร็วในการกราดตรวจก็มีความสำคัญเช่นกัน  

(3)  กล้องถ่ายภาพดิจิทัล (Digital Camera)  

เป็นอุปกรณ์รับเข้าที่นิยมมากในปัจจุบัน  อุปกรณ์ชนิดนี้สามารถนำเข้าข้อมูลที่เป็นรูปภาพหรือกราฟิก มีลักษณะและการใช้งานเหมือนกล้องถ่ายรูปธรรมดาทั่วไป แต่กล้องดิจิทัลไม่ต้องใช้ฟิล์มในการบันทึกภาพ แต่จะเก็บข้อมูลภาพไว้ในอุปกรณ์อิเล็กทรอนิกส์ ข้อมูลที่เก็บเป็นข้อมูลแบบดิจิทัล ที่รูปแต่ละรูปประกอบด้วยจุดภาพ (Pixel) เล็ก ๆ จำนวนมาก ความละเอียดของภาพขึ้นอยู่กับจำนวนจุดดังกล่าว กล้องดิจิทัลที่ผลิตได้ในปัจจุบันมีความละเอียดของภาพมากกว่า 1 ล้านจุดภาพ และข้อดีอีกอย่างหนึ่งที่ทำให้กล้องดิจิทัลเป็นที่นิยม คือ ผู้ใช้สามารถดูผลการถ่ายรูปได้หลังจากถ่ายรูปแต่ละรูปเลย โดยใช้จอภาพที่อยู่บนกล้อง หากรูปที่ถ่ายนั้นไม่เป็นที่พอใจก็สามารถถ่ายใหม่ได้ทันที  

ที่มา http://www.pookluk.com/home/wp-content/uploads/2008/08/sony-cyber-shot-dsc-t77-thumb.jpg  

 

รูปที่ 4.16 กล้องถ่ายภาพดิจิทัลและหน่วยความจำแบบแฟลชที่เก็บข้อมูล  

ดังที่กล่าวไว้แล้วว่าอุปกรณ์เก็บข้อมูลของกล้องดิจิทัลเป็นอุปกรณ์อิเล็กทรอนิกส์ ซึ่งก็คือหน่วยความจำรองที่ใช้เก็บข้อมูลหรือคำสั่งที่ใช้งานกับคอมพิวเตอร์ เช่น แผ่นบันทึก หรือหน่วยความจำที่เรียกว่า “คอมแพ็กแฟลช” (Compact Flash) ซึ่งเป็นแผ่นซิลิคอนเล็ก ๆ ที่บรรจุวงจรอิเล็กทรอนิกส์ไว้จำนวนมาก มีขนาดเล็กและน้ำหนักเบาเหมาะกับการพกพา เมื่อต้องการย้ายข้อมูลรูปภาพในคอมแพ็กแฟลชมาเก็บในเครื่องคอมพิวเตอร์ต้องใช้สายเชื่อมต่อจากกล้องมายังเครื่องคอมพิวเตอร์เพื่อเป็นสื่อหรือเส้นทางในการย้ายข้อมูล  

4.2.6  อุปกรณ์รับเข้าแบบจดจำเสียง  

การใช้งานคอมพิวเตอร์ในยุคใหม่นี้มีความพยายามทำให้เครื่องคอมพิวเตอร์สามารถรับคำสั่งหรือข้อมูลที่เป็นเสียงพูดได้ ทั้งนี้เพื่อความสะดวกในการสั่งงานคอมพิวเตอร์ อุปกรณ์รับเข้าที่ได้รับการพัฒนามาเพื่อประโยชน์ดังกล่าว เรียกว่า “อุปกรณ์วิเคราะห์เสียงพูด” (Speech Recognition Device) ซึ่งเป็นอุปกรณ์ที่เกิดขึ้นจากความร่วมมือระหว่างนักคอมพิวเตอร์และนักภาษาศาสตร์ การใช้อุปกรณ์ชนิดนี้ต้องมีซอฟต์แวร์ที่เก็บฐานข้อมูลของคำศัพท์และความหมายของคำ นอกจากนี้ยังต้องจดจำน้ำเสียงและสำเนียงของผู้ที่จะใช้งานด้วย เนื่องจากการพูดของคนแต่ละคนมีความแตกต่างกันในแง่ของน้ำเสียงและสำเนียง ดังนั้นก่อนการใช้งานอุปกรณ์ชิ้นนี้ ต้องทำให้คอมพิวเตอร์เรียนรู้และจดจำน้ำเสียงและสำเนียงของผู้ใช้งานระยะหนึ่งก่อนจึงจะใช้เริ่มงานจริงได้ ส่วนการทำงานของอุปกรณ์ชิ้นนี้จะรับข้อมูลเข้าทางไมโครโฟน (Microphone) แล้วแปลงข้อมูลเสียงให้เป็นข้อมูลแบบดิจิตอล หลังจากนั้นนำข้อมูลที่แปลงได้ไปเปรียบเทียบกับคำศัพท์ในฐานข้อมูล หาความหมายของคำนั้น ซึ่งอาจเป็นคำสั่ง เมื่อได้ความหมายก็สั่งให้คอมพิวเตอร์กระทำการตามความหมายของคำสั่งดังกล่าว  

ถึงแม้อุปกรณ์ชิ้นนี้จะสามารถรับเข้าข้อมูลสะดวกสบายขึ้น อีกทั้งสามารถช่วยคนตาบอดที่ไม่สามารถสั่งงานเครื่องคอมพิวเตอร์ผ่านแผงแป้นอักขระหรือเมาส์ได้ แต่ก็ยังมีข้อเสียที่ต้องได้รับการพัฒนาต่อไปเรื่อย ๆ เช่น ปัญหาในเรื่องของน้ำเสียงและสำเนียง เนื่องจากผู้สั่งการถึงแม้จะเป็นคนเดียวกัน แต่หากสั่งการในสภาวะอารมณ์ที่แตกต่างกัน มีผลให้น้ำเสียงแตกต่างจากเดิม การทำงานของอุปกรณ์ก็อาจผิดพลาดไปได้ ปัญหาในเรื่องความสามารถในการจดจำคำศัพท์ยังมีข้อจำกัดในเรื่องของหน่วยความจำ ทำให้จำนวนคำศัพท์ที่จำได้มีจำกัด และไม่สามารถแยกแยะคำศัพท์ที่พ้องเสียงกันได้ เช่น คำศัพท์ภาษาอังกฤษ to too และ two 

 

หน่วยประมวลผลกลาง (Central Processing Unit)

หน่วยประมวลผลกลางหรือไมโครโพรเซสเซอร์ของไมโครคอมพิวเตอร์ มีหน้าที่นำคำสั่งและข้อมูลที่เก็บไว้ในหน่วยความจำมาแปลความหมายและกระทำตามคำสั่งพื้นฐานของไมโครโพรเซสเซอร์ ซึ่งแทนได้ด้วยรหัสเลขฐานสอง

การทำงานของหน่วยประมวลผลกลาง ประกอบด้วยการคำนวณทางคณิตศาสตร์พื้นฐาน เช่น การบวก ลบ คูณ หาร การเปรียบเทียบข้อมูลสองจำนวน การควบคุมการเคลื่อนย้ายข้อมูลในส่วนต่าง ๆ ของระบบ เช่น เคลื่อนย้ายข้อมูลระหว่างอุปกรณ์รับข้อมูล อุปกรณ์แสดงผลกับหน่วยความจำ เป็นต้น

intel-processor-e2200-cpu4

รูปที่ 4.17 ไมโครโพรเซสเซอร์เพนเทียม

intel-processor-e2200-back-cpu-socket-775

รูปที่ 4.18 ภาพด้านหลังของไมโครโพรเซสเซอร์เพนเทียม
มีขาที่สามารถเสียบบนช่อง (Slot) และตรงกลางเป็นวงจรอิเล็กทรอนิกส์ กว้าง 24 มิลลิเมตร

หน่วยประมวลผลกลางเป็นวงจรไฟฟ้า มีหน่วยสำคัญที่ทำหน้าที่แตกต่างกัน 2 หน่วย ได้แก่ หน่วยควบคุม (Control Unit : CU) และหน่วยคำนวณและตรรกะ (Arithmetic And Logic Unit : ALU)

4.3.1  หน่วยควบคุม (Control Unit : CU)

หน่วยควบคุมเป็นหน่วยที่ทำหน้าที่ประสานงานและควบคุมการทำงานของระบบคอมพิวเตอร์ หน่วยนี้ทำงานคล้ายกับสมองคน ซึ่งควบคุมให้ระบบอวัยวะต่าง ๆ ของร่างกายทำงานประสานกัน นอกจากนี้ยังทำหน้าที่ควบคุมให้อุปกรณ์รับข้อมูลส่งข้อมูลไปที่หน่วยความจำ ติดต่อกับอุปกรณ์แสดงผลเพื่อสั่งให้นำข้อมูลจากหน่วยความจำไปยังอุปกรณ์แสดงผล โดยหน่วยควบคุมของคอมพิวเตอร์จะแปลความหมายของคำสั่งในโปรแกรมของผู้ใช้ และควบคุมให้อุปกรณ์ต่าง ๆ ทำงานตามคำสั่งนั้น ๆ จากที่กล่าวมาสามารถเปรียบเทียบการทำงานของหน่วยควบคุมกับการทำงานของสมองได้ดังนี้

สมอง หน่วยควบคุม
-  ควบคุมอวัยวะสัมผัสทั้งห้า -  ควบคุมการทำงานของอุปกรณ์รับข้อมูล
-  จดจำและระลึกเรื่องราวต่าง ๆ -  ควบคุมการเก็บและการนำข้อมูลจากหน่วยความจำมาใช้
-  วิเคราะห์ปัญหา แก้ปัญหา และตัดสินใจ -  ควบคุมการทำงานของหน่วยคำนวณและตรรกะ ให้ทำการคำนวณและเปรียบเทียบ
-  ควบคุมการแสดงออกโดยการพูดหรือการเขียน -  ควบคุมการทำงานของหน่วยแสดงผล ให้พิมพ์หรือบันทึกผล

4.3.2  หน่วยคำนวณและตรรกะ (Arithmetic And Logic Unit : ALU)

หน่วยคำนวณและตรรกะเป็นหน่วยที่ทำหน้าที่คำนวณทางเลขคณิต ได้แก่ การบวก ลบ คูณ หาร และเปรียบเทียบทางตรรกะ เพื่อทำการตัดสินใจ เช่น ทำการเปรียบเทียบข้อมูลเพื่อตรวจสอบว่าปริมาณหนึ่ง น้อยกว่า เท่ากับ หรือมากกว่า อีกปริมาณหนึ่ง แล้วส่งผลการเปรียบเทียบว่าจริงหรือเท็จไปยังหน่วยความจำเพื่อทำงานต่อไปตามขั้นตอนที่กำหนดไว้ในเงื่อนไข การทำงานของ ALU คือ รับข้อมูลจากหน่วยความจำมาไว้ในที่เก็บชั่วคราวของ ALU ซึ่งเรียกว่า “รีจิสเตอร์” (Register) เพื่อทำการคำนวณ แล้วส่งผลลัพธ์กลับไปยังหน่วยความจำ ทั้งนี้ในการส่งข้อมูลระหว่างอุปกรณ์ต่าง ๆ ข้อมูลและคำสั่งจะอยู่ในรูปของสัญญาณไฟฟ้า แล้วส่งไปยังอุปกรณ์ต่าง ๆ ผ่านระบบส่งถ่ายข้อมูลภายในที่เรียกว่า “บัส” (Bus)

กลไกการทำงานของหน่วยประมวลผลกลางมีความสลับซับซ้อน ผู้พัฒนาซีพียูได้สร้างกลไกให้ทำงานได้ดีขึ้น โดยแบ่งการทำงานเป็นส่วน ๆ มีการทำงานแบบขนาน และทำงานเหลื่อมกัน เพื่อให้ทำงานได้เร็วขึ้น

ในด้านความเร็วของซีพียู ถูกกำหนดโดยปัจจัย 2 อย่าง ปัจจัยแรก คือ สถาปัตยกรรมภายในของซีพียูแต่ละรุ่น ซีพียูที่ได้รับการออกแบบภายในที่ดีกว่าย่อมมีประสิทธิภาพในการประมวลผลที่ดีกว่า การพัฒนาทางด้านสถาปัตยกรรมก็มีส่วนทำให้ลักษณะของซีพียูแตกต่างกันไป

นอกจากนี้  อีกปัจจัยหนึ่งที่เป็นตัวกำหนดความเร็วของซีพียู  คือ  ความถี่ของสัญญาณนาฬิกา  (Clock)  ซึ่งเป็นสัญญาณไฟฟ้าที่คอยกำหนดจังหวะการทำงานประสานของวงจรภายในให้สอดคล้องกัน ในอดีต สัญญาณดังกล่าวจะมีความถี่ในหน่วยเป็นเมกะเฮิรตซ์ (Megahertz) หรือล้านครั้งต่อวินาที  ดังนั้น  สำหรับซีพียูที่มีสถาปัตยกรรมภายในเหมือนกันทุกประการ แต่ความถี่สัญญาณนาฬิกาต่างกัน ซีพียูตัวที่มีความถี่สัญญาณนาฬิกาสูงกว่าจะทำงานได้เร็วกว่า และซีพียูที่มีอยู่ในปัจจุบันมีความถี่ในระดับจิกะเฮิรตซ์ (Gigahertz)

4.3.3  วิวัฒนาการของหน่วยประมวลผลกลาง

เทคโนโลยีไมโครโพรเซสเซอร์ได้พัฒนาอย่างรวดเร็ว โดยเริ่มจากปี พ.ศ. 2518 บริษัทอินเทลได้พัฒนาไมโครโพรเซสเซอร์ที่เป็นที่รู้จักกันดี คือ ไมโครโพรเซสเซอร์เบอร์ 8080 ซึ่งเป็นซีพียูขนาด 8 บิต ซีพียูรุ่นนี้จะรับข้อมูลเข้ามาประมวลผลในรูปของเลขฐานสองครั้งละ 8 บิต และทำงานภายใต้ระบบปฏิบัติการซีพีเอ็ม (CP/M) ต่อมาบริษัทแอปเปิ้ลก็เลือกซีพียู 6502 ของบริษัทมอสเทคมาผลิตเป็นเครื่องแอปเปิ้ลทู ได้รับความนิยมเป็นอย่างมากในยุคนั้น

เครื่องไมโครคอมพิวเตอร์ในประเทศไทยส่วนมากเป็นคอมพิวเตอร์ที่ใช้ซีพียูของตระกูล 80XXX ที่พัฒนามาก 8088 8086 80286 80386 80486 และเพนเทียม ตามลำดับ

การพัฒนาซีพียูตระกูลนี้เริ่มจากซีพียูเบอร์ 8088 ต่อมาประมาณปี พ.ศ. 2524 มีการพัฒนาเป็นซีพียูแบบ 16 บิต ที่มีการรับข้อมูลจากภายนอกทีละ 8 บิต แต่การประมวลผลบวก ลบ คูณ หาร ภายใน จะกระทำทีละ 16 บิต บริษัทไอบีเอ็มเลือกซีพียูตัวนี้เพราะอุปกรณ์ประกอบอื่น ๆ ในสมัยนั้นยังเป็นระบบ 8 บิต คอมพิวเตอร์รุ่นซีพียู 8088 แบบ 16 บิตนี้เรียกว่า “พีซี” และเป็นพีซีรุ่นแรก

ขีดความสามารถของซีพียูที่จะต้องพิจารณานอกจากขีดความสามารถในการประมวลผลภายใน การรับส่งข้อมูลระหว่างซีพียูกับอุปกรณ์ภายนอกแล้ว ยังต้องพิจารณาขีดความสามารถในการเข้าไปเขียนอ่านในหน่วยความจำด้วย ซีพียู 8088 สามารถเขียนอ่านในหน่วยความจำได้สูงสุดเพียง 1 เมกะไบต์ (ประมาณ 1 ล้านไบต์) ซึ่งถือว่ามากในขณะนั้น

ความเร็วของการทำงานของซีพียูขึ้นอยู่กับการให้จังหวะที่เรียกว่า “สัญญาณนาฬิกา” ซีพียู 8088 ถูกกำหนดจังหวะด้วยสัญญาณนาฬิกาที่มีความเร็ว 4.77 ล้านรอบใน 1 วินาที หรือที่เรียกว่า 4.77 เมกะเฮิรตซ์ (MHz) ซึ่งปัจจุบันถูกพัฒนาให้เร็วขึ้นเป็นลำดับ

ไมโครคอมพิวเตอร์รุ่นพีซีได้รับการพัฒนาเพิ่มเติมฮาร์ดดิสก์ลงไปและปรับปรุงซอฟต์แวร์ระบบและเรียกชื่อรุ่นว่า พีซีเอ็กซ์ที (PC-XT)

ใน พ.ศ. 2527 ไอบีเอ็มเสนอไมโครคอมพิวเตอร์รุ่นใหม่ที่ทำงานได้ดีกว่าเดิม โดยใช้ชื่อรุ่นว่า “พีซีเอที” (PC-AT) คอมพิวเตอร์รุ่นนี้ใช้ซีพียูเบอร์ 80286 ทำงานที่ความเร็วสูงขึ้น คือ 6 เมกะเฮิรตซ์

การทำงานของซีพียู 80286 ดีกว่าเดิมมาก เพราะรับส่งข้อมูลกับอุปกรณ์ภายในเป็นแบบ 16 บิตเต็ม การประมวลผลเป็นแบบ 16 บิต ทำงานด้วยความเร็วของจังหวะสัญญาณนาฬิกาสูงกว่า และยังติดต่อเขียนอ่านกับหน่วยความจำได้มากกว่า คือ ติดต่อได้สูงสุด 16 เมกะไบต์ หรือ 16 เท่าของคอมพิวเตอร์รุ่นพีซีเอ็กซ์ที

พัฒนาการของเครื่องพีซีที่ทำให้ผู้ผลิตอื่นออกแบบเครื่องคอมพิวเตอร์ตามอย่างไอบีเอ็ม โดยเพิ่มขีดความสามารถเฉพาะของตนเองเข้าไปอีก เช่น ใช้สัญญาณนาฬิกาสูงขึ้นเป็น 8 เมกะเฮิรตซ์ 10 เมกะเฮิรตซ์ จนถึง 16 เมกะเฮิรตซ์ ไมโครคอมพิวเตอร์บนรากฐานของพีซีเอที จึงมีผู้ใช้กันทั่วโลก ยุคนี้จึงเป็นยุคที่ไมโครคอมพิวเตอร์แพร่หลายอย่างเต็มที่

ใน พ.ศ. 2529 บริษัทอินเทลประกาศตัวซีพียูรุ่นใหม่ คือ 80386 หลายบริษัทรวมทั้งบริษัทไอบีเอ็มเร่งพัฒนาโดยนำเอาซีพียู 80386 มาเป็นซีพียูหลักของระบบ ซีพียู 80386 เพิ่มเติมขีดความสามารถอีกมาก เช่น รับส่งข้อมูลครั้งละ 32 บิต ประมวลผลครั้งละ 32 บิต ติดต่อกับหน่วยความจำได้มากถึง 4 จิกะไบต์ (1จิกะไบต์ เท่ากับ 1,024 ล้านไบต์) จังหวะสัญญาณนาฬิกาเพิ่มได้สูงถึง 33 เมกะเฮิรตซ์ ขีดความสามารถสูงกว่าพีซีรุ่นเดิมมาก และใน พ.ศ. 2530 บริษัทไอบีเอ็มเริ่มประกาศขายไมโครคอมพิวเตอร์รุ่นใหม่ ชื่อว่า “พีเอสทู” (PS/2) โดยมีโครงสร้างทางฮาร์ดแวร์ของระบบแตกต่างออกไป โดยเฉพาะระบบบัส

ผลปรากฏว่า เครื่องคอมพิวเตอร์รุ่น 80386 ไม่เป็นที่นิยมมากนัก ทั้งนี้เพราะยุคเริ่มต้นของเครื่องคอมพิวเตอร์รุ่น 80386 มีราคาแพงมาก ดังนั้นใน พ.ศ. 2531 อินเทลต้องเอาใจลูกค้าในกลุ่มเอทีเดิม คือ ลดขีดความสามารถของ 80386 ลงให้เหลือเพียง 80386SX

ซีพียู 80386SX  ใช้กับโครงสร้างเครื่องพีซีเอทีเดิมได้พอดี  โดยแทบไม่ต้องดัดแปลงอะไร   ทั้งนี้เพราะโครงสร้างภายในซีพียูเป็นแบบ 80386 แต่โครงสร้างการติดต่อกับอุปกรณ์ภายนอกใช้เส้นทางเพียงแค่ 16 บิต ไมโครคอมพิวเตอร์ 80386SX จึงเป็นที่นิยม เพราะมีราคาถูกและสามารถทดแทนเครื่องคอมพิวเตอร์รุ่นพีซีเอทีได้

ซีพียู 80486 เป็นพัฒนาการของอินเทลใน พ.ศ. 2532 และเริ่มใช้กับเครื่องไมโครคอมพิวเตอร์ในปีต่อมา ความจริงแล้วซีพียู 80486 ไม่มีข้อเด่นอะไรมากนัก เพียงแต่ใช้เทคโนโลยีการรวมชิป 80387 เข้ากับซีพียู 80386 ซึ่งชิป 80387 เป็นหน่วยคำนวณทางคณิตศาสตร์ และรวมเอาส่วนจัดการหน่วยความจำเข้าไว้ในชิป ทำให้การทำงานโดยรวมรวดเร็วขึ้นอีก

ใน พ.ศ. 2535 อินเทลได้ผลิตซีพียูตัวใหม่ที่มีขีดความสามารถสูงขึ้น ชื่อว่า “เพนเทียม” การผลิตไมโครคอมพิวเตอร์จึงได้เปลี่ยนมาใช้ซีพียูเพนเทียม ซึ่งเป็นซีพียูที่มีขีดความสามารถเชิงคำนวณสูงกว่าซีพียู 80486 มีความซับซ้อนมากกว่าเดิม และใช้ระบบการส่งถ่ายข้อมูลได้ถึง 64 บิต

อินเทลได้พัฒนาด้านซีพียูอย่างต่อเนื่อง จากยุค 386, 486 จนมาใช้ชื่อ Pentium, Pentium Pro, Celeron, Pentium 2, Pentium 3 จากนั้นก็มาถึงยุคของ Pentium 4  และพัฒนามาถึงรุ่น Core 2 Duo ซึ่งเป็นซีพียูที่มีประสิทธิภาพสูงแต่ใช้พลังงานน้อย จึงมีความร้อนน้อยกว่า Pentium D เป็นอย่างมาก และเป็นที่นิยมในปัจจุบัน

ที่มา http://www.palmengo.ob.tc/pic4_19.gif

รูปที่ 4.19 แสดงพัฒนาการทางด้านความเร็วของหน่วยประมวลผลกลางรุ่นต่าง ๆ

จากรูปที่ 4.19 แสดงให้เห็นถึงพัฒนาการด้านความเร็วของซีพียูตั้งแต่รุ่น 8086 จนถึงรุ่นที่มีใช้อยู่ในปัจจุบัน และความคาดหวังต่อไปในอนาคตที่ไมโครโพรเซสเซอร์จะมีความเร็วถึงระดับ 100,000 คำสั่งต่อวินาที จากรูป แกน X แทนปีคริสต์ศักราชที่มีการพัฒนาไมโครโพรเซสเซอร์ และแกน Y แทนความเร็วในการทำงานของไมโครโพรเซสเซอร์ มีหน่วยเป็นล้านคำสั่งต่อวินาที (MIPS)

 

หน่วยความจำหลัก (Main Memory Unit)

หน่วยความจำหลัก คือ หน่วยความจำที่ต่อกับหน่วยประมวลผลกลางและหน่วยประมวลผลกลางสามารถใช้งานได้โดยตรง หน่วยความจำชนิดนี้จะเก็บข้อมูลและชุดคำสั่งในระหว่างการประมวลผลและมีกระแสไฟฟ้า เมื่อปิดเครื่องคอมพิวเตอร์ข้อมูลในหน่วยความจำนี้จะหายไปด้วย หน่วยความจำหลักที่ใช้ในระบบคอมพิวเตอร์ปัจจุบันเป็นชนิดที่ทำมาจากสารกึ่งตัวนำ หน่วยความจำชนิดนี้มีขนาดเล็ก ราคาถูก แต่เก็บข้อมูลได้มาก และสามารถให้หน่วยประมวลผลกลางนำข้อมูลมาเก็บและเรียกค้นได้อย่างรวดเร็ว

หน่วยความจำของคอมพิวเตอร์ประกอบด้วยวงจรอิเล็กทรอนิกส์ที่รับและส่งสัญญาณไฟฟ้าในรูปแบบของรหัส โดยนิยมแทนด้วยตัวเลข 0 และ 1 ซึ่งแทนสถานะการมีสัญญาณไฟฟ้าต่ำและสถานะการมีสัญญาณไฟฟ้าสูง หรืออาจเปรียบเทียบได้กับสถานะของหลอดไฟฟ้า คือ สถานะปิดและสถานะเปิด ดังนั้น ถ้ามีหลอดไฟฟ้าอยู่ 2 ดวง จะใช้สถานะปิดหรือเปิดแทนรหัสแบบต่าง ๆ ได้ 4 รหัส คือ

แบบที่ หลอดที่ 1 หลอดที่ 2 รหัส
1 ปิด ปิด 00
2 ปิด เปิด 01
3 เปิด ปิด 10
4 เปิด เปิด 11

จะได้จำนวนรหัสที่เกิดจากการแทนสถานะของหลอดไฟฟ้า 2 หลอด         =  22 =        4  รหัส
ถ้ามีหลอดไฟอยู่ 4 ดวง สามารถแทนรหัสแบบต่าง ๆ ได้      =  24 =  16  รหัส
หรือถ้ามีหลอดไฟอยู่ 8 ดวง สามารถแทนรหัสแบบต่าง ๆ ได้ =  28 =  256  รหัส

เนื่องจากหลอดไฟแต่ละหลอดจะมีสถานะได้ 2 แบบ คือ ลักษณะการแทนตัวเลข 0 และ 1 ด้วยสถานะดังกล่าวจะเข้ากับระบบเลขฐานสอง ตัวอย่างเช่น ให้สถานะของหลอดไฟฟ้า 2 หลอด แทนเลขฐานสอง 2 หลัก จะสามารถสร้างรหัสที่แตกต่างกันได้ 4 รหัส

ทำนองเดียวกันถ้าให้เลขฐานสองมีได้ 8 หลัก หรือ 8 บิต จะแทนรหัสได้ 256 แบบ เช่น ตัวอักษร A อาจแทนด้วยรหัส 01000001 และเครื่องหมาย * อาจแทนด้วยรหัส 00101010 เป็นต้น โดยเรียกกลุ่มที่มี 8 บิต ว่า 1 ไบต์ (Byte) หรือ 1 ตัวอักขระ โดยทั่ว ๆ ไปจะใช้จำนวนไบต์บอกขนาดของหน่วยความจำของคอมพิวเตอร์

มาตราหน่วยความจำ มีดังนี้

1 กิโลไบต์ (Kilobyte : KB)         =     210 =         1,024 ไบต์
1 เมกะไบต์ (Megabyte : MB)     =     220 =  1,048,576 ไบต์

เครื่องคอมพิวเตอร์ทุกเครื่องต้องอาศัยหน่วยความจำหลักเพื่อใช้เก็บข้อมูลและคำสั่ง ซีพียูจะทำหน้าที่นำคำสั่งจากหน่วยความจำหลักมาแปลความหมายแล้วกระทำตาม เมื่อทำเสร็จก็จะนำผลลัพธ์มาเก็บในหน่วยความจำหลัก ซีพียูจะกระทำตามขั้นตอนเช่นนี้เป็นวงรอบเรื่อย ๆ ไปอย่างรวดเร็ว เรียกการทำงานลักษณะนี้ว่า “วงรอบของคำสั่ง” (Execution Cycle)

จากการทำงานเป็นวงรอบของซีพียูนี้เอง  การอ่านเขียนข้อมูลลงในหน่วยความจำหลักจะต้องทำได้รวดเร็ว  เพื่อให้ทันการทำงานของซีพียู  โดยปกติถ้าให้ซีพียูทำงานที่ความถี่ของสัญญาณนาฬิกา 2,000 เมกะเฮิรตซ์ หน่วยความจำหลักที่ใช้โดยทั่วไปมักจะมีความเร็วไม่ทัน ช่วงติดต่ออาจมีเพียง 100 เมกะเฮิรตซ์

หน่วยความจำหลักที่ใช้กับไมโครคอมพิวเตอร์ จึงต้องกำหนดคุณลักษณะในเรื่องช่วงเวลาเข้าถึงข้อมูล (Access Time) ค่าที่ใช้ทั่วไปจะอยู่ในช่วงประมาณ 60 นาโนวินาที ถึง 125 นาโนวินาที (1 นาโนวินาที เท่ากับ 10-9 วินาที) แต่อย่างไรก็ตาม มีการพัฒนาให้หน่วยความจำสามารถใช้กับซีพียูที่ทำงานเร็วขนาด 33 เมกะเฮิรตซ์ โดยการสร้างหน่วยความจำพิเศษมาคั่นกลางไว้ ซึ่งเรียกว่า หน่วยความจำแคช (Cash Memory) ซึ่งเป็นหน่วยความจำที่เพิ่มเข้ามา เพื่อนำชุดคำสั่งหรือข้อมูลจากหน่วยความจำหลักมาเก็บไว้ก่อน เพื่อให้ซีพียูเรียกใช้ได้เร็วขึ้น

4.4.1  หน่วยความจำหลักแบบอ่านได้อย่างเดียว (Read Only Memory : ROM)

หน่วยความจำหลักแบบอ่านได้อย่างเดียว หรือที่เราเรียกว่า “รอม” (Read Only Memory : ROM) เป็นหน่วยความจำหลักที่บริษัทผู้ผลิตไมโครคอมพิวเตอร์ได้บรรจุโปรแกรมมาเรียบร้อยแล้ว โปรแกรมนี้เก็บในลักษณะถาวร คือ ข้อมูลที่บรรจุในหน่วยความจำแบบนี้จะยังอยู่แม้จะปิดเครื่องไปแล้ว และเมื่อเปิดเครื่องใหม่หน่วยประมวลผลกลางจะอ่านโปรแกรมหรือข้อมูลในรอมมาใช้ประมวลผลได้เท่านั้น โดยไม่สามารถที่จะนำข้อมูลอื่นใดมาเขียนลงในรอมได้ สาเหตุที่ต้องมีโปรแกรมเก็บไว้ถาวรก็เนื่องจากเมื่อเวลาเริ่มต้นทำงานไมโครคอมพิวเตอร์จะต้องทำการเรียกระบบปฏิบัติการจากแผ่นบันทึกมาบรรจุในหน่วยความจำ หน่วยความจำรอมที่ใช้ในระบบไมโครคอมพิวเตอร์จะมีขนาดประมาณ 8 KB ขึ้นไป โปรแกรมที่เก็บไว้ในรอมและเป็นหน่วยสำคัญของระบบนี้มีชื่อว่า “ไบออส” (Basic Input Output System : BIOS)

รอมส่วนใหญ่เป็นหน่วยความจำไม่ลบเลือน แต่อาจยอมให้ผู้พัฒนาระบบลบข้อมูลและเขียนข้อมูลลงไปใหม่ได้ การลบข้อมูลนี้ต้องทำด้วยกรรมวิธีพิเศษ เช่น ใช้แสงอัลตราไวโอเลตฉายลงบนผิวซิลิคอน หน่วยความจำประเภทนี้มักจะมีช่องกระจกใสสำหรับฉายแสงขณะลบ และขณะใช้งานจะมีแผ่นกระดาษทึบปิดทับไว้ เรียกหน่วยความจำประเภทนี้ว่า “อีพร็อม” (Erasable Programmable Read Only Memory : EPROM)

4.4.2  หน่วยความจำหลักแบบแก้ไขได้ (Random Access Memory : RAM)

หน่วยความจำหลักแบบแก้ไขได้ หรือที่เราเรียกว่า “แรม” (Random Access Memory : RAM) เป็นหน่วยความจำหลักที่สามารถนำโปรแกรมและข้อมูลจากอุปกรณ์ภายนอกหรือหน่วยความจำรองมาบรรจุไว้ หน่วยความจำแรมนี้ต่างจากรอมที่สามารถเก็บข้อมูลได้เฉพาะเวลาที่มีไฟฟ้าเลี้ยงวงจรอยู่เท่านั้น หากปิดเครื่องข้อมูลจะหายไปหมดสิ้น เมื่อเปิดเครื่องใหม่อีกครั้งจึงจะนำข้อมูลหรือโปรแกรมมาเขียนใหม่อีกครั้ง หน่วยความจำชนิดนี้ทำงานเหมือนกระดานดำ คือ สามารถลบข้อมูลที่ไม่ใช้งานแล้วออกได้ เพื่อเพิ่มพื้นที่ว่างในการเก็บข้อมูลใหม่  ไมโครคอมพิวเตอร์ 16 บิต รุ่น XT มีหน่วยความจำหลักแรมเพียง 640 KB แต่ในยุคหลังนี้ ไมโครโพรเซสเซอร์มีหน่วยความจำหลักแรมได้หลายร้อยเมกะไบต์ โดยปกติขนาดของแรมจะใช้ในการกล่าวถึงขนาดความจำของเครื่องคอมพิวเตอร์ด้วย หน่วยความจำแรมมีขนาดแตกต่างกันออกไป หน่วยความจำชนิดนี้บางครั้งเรียกว่า Read Write Memory ซึ่งหมายความว่า สามารถทั้งอ่านและบันทึกได้ หน่วยความจำแบบแรมที่มีใช้อยู่สามารถแบ่งได้ 2 ประเภท คือ

1)  ไดนามิกแรมหรือดีแรม (Dynamic RAM : DRAM)

เป็นหน่วยความจำที่มีใช้งานอยู่ในเครื่องไมโครคอมพิวเตอร์มากที่สุดเนื่องจากราคาไม่แพงและมีความจุสูง หน่วยความจำชนิดนี้เก็บข้อมูลเลขฐานสองแต่ละบิตไว้ที่ตัวเก็บประจุ ซึ่งอาจจะมีการคายประจุทำให้ข้อมูลที่เก็บไว้หายไปได้ จึงต้องออกแบบให้มีการย้ำสัญญาณไฟฟ้าหรือที่เรียกว่า “รีเฟรช” (Refresh) ให้ตัวเก็บประจุตลอดเวลา  เพื่อให้ข้อมูลที่เก็บภายในยังคงอยู่ตลอดการใช้งาน ซึ่งการรีเฟรชดังกล่าวมีผลให้หน่วยความจำชนิดนี้อ่านและเขียนข้อมูลได้ช้า

ในการเข้าถึงข้อมูลของไดนามิกแรมจะแบ่งเวลาในการเข้าถึงข้อมูลเป็น 2 ช่วง ได้แก่ ช่วงจัดเตรียม (Setup Time) คือเวลาที่ใช้ในการเตรียมพื้นที่ในแรมให้พร้อมในการรับหรือส่งข้อมูล ภายในแรมแบ่งเป็นตารางที่สามารถระบุเป็นแถว (Row) และสดมภ์ (Column) แต่ละช่องคือพื้นที่ใช้เก็บข้อมูล แบ่งเป็นตำแหน่งที่อยู่ (Address) การจะอ่านหรือเขียนข้อมูล ซีพียูต้องส่งสัญญาณที่ระบุตำแหน่งดังกล่าวไป เพื่อเตรียมการรับหรือส่งข้อมูลของพื้นที่ที่ระบุ สำหรับช่วงที่สองเรียกว่า ช่วงวงรอบการทำงาน (Cycle Time) คือ เวลาที่ใช้ในการอ่านหรือเขียนข้อมูลในตำแหน่งที่อยู่ที่ระบุส่งกลับมายังซีพียู การอ่านข้อมูลของดีแรมในยุคแรก ๆ อ่านข้อมูลทีละ 4 ไบต์ โดยต้องส่งสัญญาณระบุตำแหน่งที่อยู่เป็นแถวและสดมภ์ของแต่ละไบต์ไปยังแรม

ในปัจจุบันมีการคิดค้นดีแรมขึ้นใช้งานอยู่หลายชนิด เทคโนโลยีในการพัฒนาหน่วยความจำประเภทแรมเป็นความพยายามลดเวลาในส่วนที่สองของการอ่านข้อมูล นั่นก็คือ ช่วงวงรอบการทำงาน นักเรียนอาจเคยได้ยินชื่อเรียกแรมมาหลายประเภท ดังนี้

ก)  เอฟพีเอ็มดีแรม (Fast Page Mode Dynamic RAM : FPM DRAM)

เป็นแรมที่พัฒนาหลังจากไดนามิกแรมธรรมดาในยุคแรก ๆ ที่ใช้ในเครื่องระดับ 80286 และ 80386 เอฟพีเอ็มดีแรม เป็นแรมชนิดที่เก่าที่สุดที่ยังคงมีขายอยู่ในตลาดคอมพิวเตอร์ เป็นแรมที่พัฒนาขึ้นใช้ในเครื่องคอมพิวเตอร์ระดับ 80486 ปัจจุบันยังคงมีการผลิตมาจำหน่าย แต่น้อยมาก ทำให้เป็นแรมชนิดที่มีราคาแพง

หลักการทำงานของแรมชนิดนี้พัฒนามาจากการทำงานของไดนามิกแรมธรรมดา คือ อ่านข้อมูลทีละ 4 ไบต์เหมือนกัน แต่ใช้หลักการที่ให้ข้อมูลเหล่านั้นอยู่ในแถวเดียวกันแต่คนละสดมภ์ การส่งสัญญาณระบุตำแหน่งของไบต์ที่ 2 – 4 ระบุเฉพาะส่วนที่เป็นตำแหน่งของสดมภ์ ส่วนการระบุแถวจะส่งไปในครั้งแรกเพียงครั้งเดียว ทำให้เวลาในการเข้าถึงข้อมูลไบต์ที่ 2 – 4 ลดลงเหลือเพียงส่วนที่สองเท่านั้น เป็นผลให้การทำงานของเอฟพีเอ็มดีแรมเร็วกว่าแรมธรรมดาประมาณร้อยละ 30 และมีอัตราการส่งถ่ายข้อมูลในช่วง 100 – 200 เมกะไบต์ต่อวินาที

ข)  อีดีโอแรม (Extended Data Output RAM : EDO RAM)

เป็นแรมที่พัฒนาขึ้นหลังจากเอฟพีเอ็มดีแรม พัฒนาขึ้นในปี พ.ศ. 2538 โดยบริษัทไมครอนในประเทศสหรัฐอเมริกา ใช้ในเครื่องคอมพิวเตอร์ระดับเพนเทียมเอ็มเอ็มเอ็กซ์ เพนเทียมโปร ซึ่งไม่เป็นที่นิยมแล้วในปัจจุบัน หลักการทำงานของแรมชนิดนี้เหมือนกับเอฟพีเอ็มดีแรม แต่ใช้เวลาในการอ่านข้อมูลแต่ละไบต์เร็วกว่า โดยสามารถส่งสัญญาณระบุตำแหน่งส่วนที่เป็นสดมภ์ของไบต์ถัดไปได้เลย โดยไม่ต้องรอให้การอ่านข้อมูลปัจจุบันเสร็จสิ้นก่อน ทำให้เข้าถึงข้อมูลได้เร็วกว่าเอฟพีเอ็มดีแรมร้อยละ 5 – 10 แรมชนิดนี้ทำงานได้เร็วในเครื่องคอมพิวเตอร์ที่ใช้ความถี่ 66 เมกะเฮิรตซ์และส่งถ่ายข้อมูลด้วยความเร็ว 800 เมกะไบต์ต่อวินาที

ค)  เอสดีแรม (Synchronous Dynamic RAM : SDRAM)

หลังจาก พ.ศ. 2538 การพัฒนาไมโครโพรเซสเซอร์เป็นไปอย่างต่อเนื่องและรวดเร็ว ทำให้เครื่องคอมพิวเตอร์ที่ผลิตในยุคต่อมา คือ เพนเทียมทู (Pentium II) และเพนเทียมทรี (Pentium III) เป็นเครื่องที่มีความถี่สูงกว่า 66 เมกะเฮิรตซ์ และมีแนวโน้มที่จะพัฒนาต่อมาเรื่อย ๆ มีผลให้อีดีโอแรมทำงานได้ไม่ดีพอ จึงมีการผลิตแรมที่เรียกว่า “เอสดีแรม” ที่มีการทำงานเข้าจังหวะของสัญญาณนาฬิกาแทน โดยสามารถเข้าถึงข้อมูลและอ่านข้อมูลได้ 4 ไบต์ต่อรอบสัญญาณนาฬิกา 1 ครั้ง หรือที่เรียกว่า 1 คล็อก (1 Clock) แรมชนิดนี้สามารถทำงานได้ที่ความถี่ 100 เมกะเฮิรตซ์ขึ้นไป และความเร็วในการส่งถ่ายข้อมูลประมาณ 800 เมกะบิตต่อวินาที

spd_20081224180246_b

รูปที่ 4.20 เอสดีแรม

เอสดีแรมเป็นแรมชนิดที่ยังใช้งานอยู่ในเครื่องไมโครคอมพิวเตอร์ปัจจุบัน โดยแรมประเภทนี้มีขายในตลาดคอมพิวเตอร์ จะทำงานได้ที่ความถี่แตกต่างกัน การอ้างถึงแรมประเภทนี้จะอ้างตามความถี่ดังกล่าว โดยอ้างเป็น PC-66 หมายถึง เอสดีแรมที่มีการส่งถ่ายข้อมูลที่ความถี่ 66 เมกะเฮิรตซ์ ในขณะที่ PC-133 หมายถึง เอสดีแรมที่มีการส่งถ่ายข้อมูลที่ความถี่ 133 เมกะเฮิรตซ์

ง)  ดีดีอาร์ เอสดีแรม (Double Data Rate Synchronous Dynamic RAM : DDR SDRAM)

เป็นแรมที่พัฒนามาจากเอสดีแรม นิยมเรียกอีกอย่างหนึ่งว่า “ดีอาร์ดีแรม” (DRDRAM) สามารถทำงานได้เร็วกว่าเอสดีแรมธรรมดา 2 เท่าที่ความถี่เดียวกัน คือ สามารถอ่านหรือเขียนข้อมูลได้ 2 ครั้งใน 1 รอบสัญญาณนาฬิกา

134529

รูปที่ 4.21 ดีดีอาร์ เอสดีแรม

จ)  อาร์ดีแรม (Rambus Dynamic RAM : RDRAM)

เป็นแรมที่ได้รับการออกแบบระบบใหม่ให้แตกต่างจากแรมชนิดอื่นที่ได้กล่าวมาข้างต้น พัฒนาโดยบริษัทแรมบัส (Rambus)โดยแรมชนิดนี้ใช้สัญญาณนาฬิกาความถี่ 400 เมกะเฮิรตซ์ และส่งข้อมูลผ่านทางบัสที่มีความเร็วสูง เป็นแรมประเภทที่มีราคาแพงและการใช้งานซับซ้อน จึงไม่เป็นที่นิยมเท่ากับเอสดีแรม และ ดีดีอาร์ เอสดีแรม

ที่มา http://library.thinkquest.org/06aug/02177/rdram.jpg

รูปที่ 4.22 อาร์ดีแรม

2)  สแตติกแรม (Static RAM : SRAM)

เป็นหน่วยความจำที่สามารถอ่านและเขียนข้อมูลได้เร็วกว่าดีแรม เนื่องจากไม่ต้องมีการรีเฟรชอยู่ตลอดเวลา แต่หน่วยความจำชนิดนี้มีราคาแพงและจุข้อมูลได้ไม่มาก จึงนิยมใช้หน่วยความจำชนิดนี้เป็นหน่วยความจำแคช ซึ่งเป็นอุปกรณ์ช่วยเพิ่มความเร็วในการทำงานของดีแรม

นอกจากนี้ยังมีอุปกรณ์อีกชิ้นหนึ่งที่เป็นอุปกรณ์หลักภายในเครื่องคอมพิวเตอร์ เนื่องจากเป็นอุปกรณ์ที่รวมองค์ประกอบของคอมพิวเตอร์ทุกหน่วยเข้าด้วยกัน อุปกรณ์ชิ้นนั้นคือ แผงวงจรหลัก หรือเมนบอร์ด (Mainboard) เป็นอุปกรณ์ที่เหมือนศูนย์กลางของระบบคอมพิวเตอร์ เนื่องจากอุปกรณ์ทุกชิ้น ไม่ว่าจะเป็นหน่วยรับเข้า หน่วยแสดงผล หน่วยความจำหลัก หรือหน่วยความจำรอง ต้องถูกนำมาต่อเชื่อมกับเมนบอร์ดจึงจะทำงานได้

ที่มา http://yalor.yru.ac.th/~nipon/Mmain_html/chapter2/picture/cua%5B1%5D.jpg

รูปที่ 4.23 แสดงส่วนประกอบบนแผงวงจรหลักภายในเครื่องคอมพิวเตอร์

เมนบอร์ดประกอบด้วยอุปกรณ์หลักดังนี้

1.  พอร์ตต่อเชื่อมกับอุปกรณ์รอบข้าง (Port)

พอร์ตเป็นช่องสำหรับต่อเข้ากับหน่วยรับเข้า หน่วยแสดงผล รวมทั้งอุปกรณ์ สนับสนุนทั้งหลาย อาจเป็นแผงแป้นอักขระ เมาส์ เครื่องพิมพ์ ในปัจจุบันพอร์ตที่มีการใช้อยู่ ได้แก่ พอร์ตแบบอนุกรม (Serial Port) พอร์ตแบบขนาน (Parallel Port) และยูเอสบี (USB Port)

2. สล็อต (Slot)

มีลักษณะเป็นช่องสำหรับเสียบอุปกรณ์  เช่น  แรม  โมเด็มแบบติดตั้งภายใน หรืออุปกรณ์อื่นๆ ที่ช่วยขยายความสามารถในการทำงานของเครื่องคอมพิวเตอร์ บนเมนบอร์ดประกอบด้วยสล็อตที่เสียบอุปกรณ์ต่างๆ ดังนี้

2.1)  สล็อตเสียบแรม เป็นตำแหน่งที่เสียบหน่วยความจำหลักแบบแรม  โดยแรมที่จะนำมาเสียบลงในสล็อตนี้  ต้องเป็นแบบที่สล็อตนี้รับได้เท่านั้น  ดังนั้นการเปลี่ยนหรือเพิ่มแรม ผู้ใช้ต้องศึกษาชนิดของแรมที่เข้ากับสล็อตเสียก่อน

2.2)  สล็อตPCI เป็นช่องสำหรับเสียบอุปกรณ์ต่าง ๆ ที่ต้องการต่อเพิ่มเติมเข้ากับคอมพิวเตอร์    ซึ่งโดยทั่วไปอุปกรณ์เหล่านั้น  จะได้รับการออกแบบในรูปของการ์ด สำหรับเสียบเพิ่มตามต้องการ เช่น การ์ดเสียง การ์ดแสดงผล โมเด็มแบบติดตั้งภายใน การ์ดสำหรับเชื่อมต่อเครือข่ายหรือการ์ดแลน

2.3)  สล็อตISA เป็นช่องเสียบสำหรับอุปกรณ์เพิ่มเติมเช่นเดียวกับสล็อต PCI สล็อต ISA เป็นรุ่นที่เก่ากว่า เมนบอร์ดรุ่นใหม่ไม่มีสล็อตประเภทนี้แล้ว

2.4)  สล็อตAGP เป็นสล็อตสำหรับเสียบการ์ดแสดงผลความเร็วสูง ซึ่งช่วยเพิ่มประสิทธิภาพในการแสดงผลทางจอภาพ

3.  ซ็อคเก็ต (Socket)

สำหรับเสียบซีพียู เป็นตำแหน่งที่เสียบซีพียู ซึ่งจะต้องเป็นรุ่นที่เข้ากันได้กับเมนบอร์ดเช่นเดียวกับแรม

4.  ชิปเซ็ต (Chipset)

ถือเป็นองค์ประกอบหลักของเมนบอร์ดและติดมากับเมนบอร์ดทุกชิ้น ไม่สามารถแก้ไขได้ ชิปเซ็ตเป็นอุปกรณ์ที่กำหนดคุณสมบัติของเมนบอร์ด ควบคุมส่วนประกอบต่าง ๆ เป็นอุปกรณ์ที่กำหนดว่า แรม ซีพียู และอุปกรณ์ชนิดใดที่สามารถเข้ากับเมนบอร์ดได้ และมีขีดจำกัดในการขยายความสามารถเพียงใด ดังนั้นในการเลือกซื้อเมนบอร์ด ผู้ซื้อต้องพิจารณาจากชิปเซ็ตนี้

5.  ขั้วต่อ IDE (IDE Connector)

เป็นขั้วสำหรับต่อสายส่งข้อมูลชนิด IDE เข้ากับฮาร์ดดิสก์และซีดีรอมเพื่อสามารถถ่ายโอนข้อมูลระหว่างอุปกรณ์เหล่านั้นเข้ามาประมวลผล

รูปที่ 4.24 แสดงการติดตั้งแผงวงจรหลักในตัวถังของเครื่องคอมพิวเตอร์

4.4.3  หน่วยความจำแคช (Cash Memory)

เป็นหน่วยความจำแรมที่นำมาช่วยเพิ่มประสิทธิภาพในการทำงานของเครื่องคอมพิวเตอร์ เนื่องจากหน่วยความจำประเภทนี้สามารถอ่านและเขียนข้อมูลได้เร็วกว่าหน่วยความจำประเภทดีแรม จึงนิยมนำหน่วยความจำแคชมาช่วยเพิ่มความเร็วในการอ่าน เขียนข้อมูลของหน่วยความจำประเภทดีแรม โดยทำงานอยู่ตรงกลางระหว่างหน่วยประมวลผลกลางและดีแรม กล่าวคือ ปกติเมื่อหน่วยประมวลผลกลางจะกระทำการใด ๆ ต้องเรียกข้อมูลและคำสั่งจากหน่วยความจำแรมเสมอ และหน่วยความจำแคชทำหน้าที่เก็บข้อมูลและคำสั่งที่มีการใช้งานบ่อย เมื่อมีการเรียกใช้งานคำสั่งดังกล่าว หน่วยประมวลผลกลางไม่จำเป็นต้องเข้าถึงข้อมูลในแรม แต่สามารถเรียกข้อมูลจากแคชซึ่งเข้าถึงข้อมูลเร็วกว่าได้โดยตรง ทำให้ลดเวลาในการอ่านเขียนข้อมูลได้

 

 

ที่มา : krusunanta.net